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BELL-CURVE BASED EVOLUTIONARY 
OPTIMIZATION ALGORITHM 

Jaroslaw Sobieszczanski-Sobieski’, Keith Labat, and Rex Kincaid’ 

Abstract 

The paper presents an optimization algorithm that falls 
in the category of genetic, or evolutionary algorithms. 
While the bit exchange is the basis of most of the Ge- 
netic Algorithms (GA) in research and applications in 
America, some alternatives, also in the category of 
evolutionary algorithms, but use a direct, geometrical 
approach have gained popularity in Europe and Asia. 
The Bell-Curve Based Evolutionary Algorithm (BCB) 
is in this alternative category and is distinguished by the 
use of a combination of n-dimensional geometry and 
the normal distribution, the bell-curve, in the generation 
of the offspring. The tool for creating a child is a geo- 
metrical construct comprising a line connecting two 
parents and a weighted point on that line. The point 
that defines the child deviates from the weighted point 
in two directions: parallel and orthogonal to the con- 
necting line, the deviation in each direction obeying a 
probabilistic distribution. Tests showed satisfactory 
performance of BCB. The principal advantage of BCB 
is its controllability via the normal distribution pa- 
rameters and the geometrical construct variables. 

0. Introduction 

Vigorous research and increasing applications in opti- 
mization by Genetic Algorithms (GA) continue because 
of the GA capability to handle discrete problems, mul- 
tiple minima, and multiple objectives, e.g., Baeck, 
1997. That list of attractors has recently been extended 
to comprise the GA intrinsic concurrent processing ca- 
pability. This capability is closely aligned with the pre- 
sent trend in computer technology toward multiproces- 
sor machines and machine clusters. In addition to its 
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utilitarian values, the GA has been seen as an elegant 
transposition of the biological mechanism of “the sur- 
vival of the fittest” onto the grounds of engineering. 

While the original, biology-inspired GA that employs 
crossover and random mutations, and operates on 0-1 
bits in binary strings as analogs of genes and chromo- 
somes, remains the mainstay of research and applica- 
tions in America, an alternative approach, also in the 
category of evolutionary optimization, has been gaining 
popularity in Europe and Asia. This approach calls for 
changing design variables by direct applications of the 
rules of probability without operating on binary strings. 

Once the confines of the biology emulation are dis- 
carded, the ways one can generate successive genera- 
tions is limited only by the imagination. This has re- 
sulted in a gamut of techniques varying in ingenuity 
and complexity. An example of a very simple mecha- 
nism is found in Grill and Hartmann, 1998. It alters 
design variables by adding to each an increment whose 
magnitude is governed by the familiar “bell-curve” 
probability distribution and generates a child from a 
single parent (asexual reproduction). A contrasting 
example of a more complex technique is the algorithm 
proposed in Ono and Kobayashi, 1997. Their technique 
connects two parents by a line in the design space and 
places the child away from that line at a distance con- 
trolled by the location of a third parent. 

An advantage that motivated the development of tech- 
niques such as the two above examples is, primarily, an 
improved controllability of the entire optimization 
process. In addition, premature convergence caused by 
a loss of diversity in the successive generations 
(population stagnation) that often occurs in the original, 
biology-inspired GA is remedied. Another motivation 
is the natural human desire to improve on the devices 
originally inspired by the natural world. 

In this paper, we report on a technique in the same 
category as that of Ono and Kobayashi, 1997. It also 
uses two parents connected by a line in the design space 
as a basis for generation of children. However, instead 
of using a third parent, it relies throughout on the fa- 
miliar, “bell-curve” probability distribution. A variant 
of the technique selects one parent by the objective 
function criterion, and the other by the degree of satis- 
faction of the constraints. Testing in structural applica- 
tions demonstrates the technique’s effectiveness in lo- 
cating constrained minima in a rather complex design 
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space, and its ease of controllability, achieved without 
sacrificing the valuable concept of inheritance from 
two-parents (the concept abandoned in the asexual re- 
production). 

1. Notation 

B - point where orthogonal subspace intersects L 
C - child of P1& P2 
D - distance between P1, and P2 on L 
f, , fi - fitness measures of parents P1 and P2 
F(X) - objective function. 
F, - F with a penalty term added for a constraint viola- 
tion 
<g> - vector of NGV violated constraints 
g(X) - vector of NG inequality constraint functions 
L - line from Parent 1 through Parent 2, from - to + in- 
finity 
M - point on L, the origin of coordinate s 
N(m, 0) - normal distribution with mean m and vari- 
ance B; a code to generate this may be found in Pritsker 
1986. 
NP - number on individuals in a generation 
NX - number of the design variables, length of X. 
p - penalty factor 
PI, P2 - pair of parent points 
r - coefficient used to define G in the N-distribution of 
R 
R - radius of hypersphere in NX-1 subspace, centered 
on point B 
s - coordinate originating at M, positive toward P2. 
W - structural weight (or volume) 
X - vector of NX design variables. 
X1, X2, X,, &, and X, - X vectors associated with P1, 
P2, B, C, and M. 
B - standard deviation 

2. The Bell Curve-Based (BCB) Algorithm 

The BCB algorithm solves the optimization problem 

1 )  Find X 
Minimize F(X) 
Satisfy g(X) <= 0 

where X, F(X) and g(X) may be continuous or discrete. 
In simplest terms, the BCB algorithm creates a child 
from two parents who are selected out of NP individu- 
als in the current generation in the same way as in the 
original GA. The selection fitness criterion penalizes 
constraint violations by adding a penalty term to F 

2) F, = F + p I: max(<g>); 

In the BCB variant (BCBN), Parent 1 is selected by F 
and Parent 2 by max(<g>). 

The crux of the BCB Algorithm is the way a child is 
created from parents by the following geometrical con- 
struct. The paired parents, PI and P2 in Figure 1, are 
connected by line L in the NX-dimensional design 
space. They are a distance D apart. Point M is placed 
on L between the parents at a location that deviates 
from the mid-point toward the parent of better fitness. 
Coordinate s, originating at M and pointed toward Par- 
ent 2, is used to locate point B on L by a random prob- 
ability distribution, the bell-curve from which the algo- 
rithm takes its name: 

3) sB = N(O,O) 

where N(0,o) is a normally distributed random number 
with mean 0 and standard deviation G given in units of 
D. 

Now, we define a subspace orthogonal to L and inter- 
secting L at B. The orthogonality reduces the subspace 
dimensions to NX- 1. In that subspace we create a hy- 
persphere of radius R whose length is again governed 
by the positive side of the normal distribution in units 
of (r D) 

4) R = IN(0, @I; 

Finally, point C representing the child is placed on the 
surface of the hypersphere using a uniform. not normal, 
distribution over that surface. Owing to the subspace 
orthogonality to L, the chance of the child falling back 
on either parent is exceedingly small. 

Figure 1 shows a three-dimensional design space, in 
which the hypersphere reduces to a circle of radius R, 
perpendicular to L at B, and point C may fall anywhere 
on the perimeter of that circle with equal probability. 

In the remainder of BCB one may again use any of the 
standard GA techniques. In the study reported herein, 
one repeats the parent selection and the child generation 
process until the number of children reaches NP. The 
children are added to the parents resulting in a popula- 
tion that swells to 2 NP. Selection based upon the ap- 
plication of the Fp fitness criterion to all the individuals, 
young and old alike, reduces the population back to NP, 
and the process starts over - see Appendix for the BCB 
& BCBN step-by-step recipe and further details. 

The way BCB algorithm generates children contrasts 
with that of the original GA (O/GA) as shown in Figure 
2 for a case of integer variables in a 2D space. When 
integer variables are represented as a binary string, 
there is a limited number of ways these strings may be 
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mixed by the O/GA crossover mechanism. Figure 2a 
illustrates the consequences, demonstrating the cluster- 
ing of the OlGA children toward the parents. Intrigu- 
ingly, this clustering seems to reflect the folk wisdom 
that among siblings, one child “takes after the mother” 
and the other “takes after the father”, rather than both 
reflecting features of the parents evenly mixed. Note 
that the children from random mutations (each mutation 
changes one 0 to 1 or vice versa) also fall in that clus- 
tering pattern. It has also been observed, e.g., Ono and 
Kobayashi, 1997, that the degree of feature inheritance 
is affected by the angles formed by L and the coordi- 
nate axis. Furthermore, that inheritance also depends 
on the choice of the numerical system, binary or deci- 
mal. 

Figs. 2b and c depict the BCB children for a small and a 
large o. Comparing to Figure 2a, their distribution is 
more centered on the line connecting the parents, so 
that most of the children inherit, mix, and average the 
features of the parents (within a restriction imposed by 
integer nature of the variables). In this regard, the BCB 
improves on both O/GA, and on the asexual reproduc- 
tion that abandons the two-parent inheritance. Observe, 
also, that the normal distribution allows some of the 
children to fall beyond the parents as measured along 
the coordinate axis and along L. The tails of the bell- 
curve enable them to fall anywhere within the design 
space limits so that additional random mutations may 
not be necessary to maintain the population diversity. 
Also, it is apparent that owing to the use of the local 
variable s and the normal distribution, the locations of 
the children do not depend on the orientation of L and 
on the choice of the numerical system. 

To recapitulate this narrative description of the BCB 
algorithm, the algorithm may be controlled by: 

lower bound on the inter-parent distance D to keep the 
parents far enough apart to foster diversity 

standard deviation a; two different os are used to 
control the location of B and the length of R (equations 
3 and 4). 

penalty coefficient p 
choosing between BCB and BCBN 

In addition, the usual GA controls apply to the parent 
selection and formation of the next generation from the 
parents and their children. 

3. Testing and Results 

One of the examples is depicted in Figure 3. It is a hub 
structure which appears also in Balling and Sobi- 
eszczanski-Sobieski, 1994. Each member of the hub is 
an I-beam rigidly attached to the hub and to the wall. 
The structure is optimized for minimum weight 

(equivalent to volume for the homogeneous material 
used), so that the smaller the fitness the better the 
structure. 

The beam cross-sectional dimensions are the design 
variables, and the constraint functions reflect the mate- 
rial allowable stress and the overall and local buckling. 
Additional constraints are also imposed on the hub dis- 
placements. The top and bottom flanges of the I-beam 
are not of the same dimensions, hence the cross-section 
of each I-beam requires 6 design variables. Details are 
given in the Appendix, including the constraint function 
formulations; they may also be found in Padula, et. al., 
1997. 

Utility of the hub structure as an optimization test case 
stems from its ability to be enlarged by adding as many 
members as desired without increasing the dimension- 
ality of the load-deflection equations. These remain 
3x3 equations for a 2D hub structure regardless of the 
number of members. While analytically simple, the 
hub structure design space is complex because the 
stress, displacement, and buckling constraints are rich 
in nonlinearities and couplings among the design vari- 
ables. 

The results included herein are for two versions of the 
hub structure: Version 1 comprising 2 members, and 
loaded by 2 loading cases; Version 2 is made up of 6 
members, and loaded by 3 loading cases. In both ver- 
sions the members have the same type of I-cross- 
section defined by 6 design variables. 

To validate the GA results and to provide a comparison, 
a few other methods were exercised: 

Method 2: a crossover method where the child‘s val- 
ues are taken directly from one parent or the other. A 
basic mutation is applied that adds or subtracts a uni- 
form random variable on the range of zero to 1/10 of 
the range of allowable values for that particular vari- 
able. 

Method 3: a crossover method where the child’s val- 
ues are calculated as a direct average of the two corre- 
sponding parent values. The mutation is the same as in 
method 2. 

Method 4: a usable-feasible search algorithm 
(Vanderplaats 1973) 

Method 5:  random generation of 10000 solutions to 
show that the genetic algorithms produce results better 
than a random examination of the solution space. 

BCB and methods 2-5 were executed for Version 1; 
Version 2 was optimized using BCB, methods 4 & 5,  
and by BCBN. 
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Table 1 and 2 define the structure for Versions 1 and 2 
and show the corresponding results. Note that Version 
2 in Table 2 has one member much shorter than others 
to create a case whose solution is known in advance. 
That is, all members other than the short one should 
shrink to minimum gage dimensions. Both Method 4 
and BCB confirmed that. Table 2.1 shows results for 
Version 2 with varied member length. Comparison of 
the BCB and BCBN performances is presented in Ta- 
ble 3. 

To test the BCB ability to locate the global minimum, a 
single member hub structure test was devised, shown in 
Figure 4. In that test the load is limited to F, only and 
the member is optimized by adding to the 6 cross- 
sectional design variables the orientation angle relative 
to the loading force, as the 7th variable. Zero angle cor- 
responds to pure compression. The global minimum is 
expected at the angle 180 degrees in pure tension, the 
second minimum is known to occur at 0 degrees in 
compression, separated by the maximum weight at 
about 90 degrees in bending. The convergence of BCB 
on the optimal angle is demonstrated in Table 4. 

The number of individuals in a population was 10 in all 
the tests reported herein. This relatively small number 
was found experimentally to be sufficient in these tests. 

A typical BCB histogram is in Figure 5.  The dotted 
line represents the best objective (structural weight) 
fitness in the generation, and the solid line depicts the 
penalty function F,. The places where the two lines do 
not overlap indicate designs where the most fit member 
is infeasible. In this case, the fitness value is based on 
the structural weight plus the penalty term, resulting in 
the discrepancy in the two values. It is apparent that 
BCB selected feasible designs from the initial popula- 
tion and maintained that feasibility throughout. To do 
so, BCB had to be supplied with a judiciously chosen 
value of p. 

Controllability of BCB is demonstrated in Figure 6. It 
shows how the value of (3 (eq. 3) that governs the lo- 
cation of B makes the process converge faster. On the 
other hand, a larger value of d enables one to “cast a 
wider net” for more diverse designs at the penalty of 
converging slower. The coefficient r that governs R (ie. 
(T in eq.4) has a similar effect as illustrated in Figure 7. 

Examination of a large number of designs generated in 
the BCB process revealed that, typically, a group of 
feasible and near optimal designs results from the proc- 
ess. 

4. Conclusions 

An algorithm was developed in the class of evolution- 
ary optimization for creating design populations that 
improve in a series of successive generations. Distin- 
guishing features of the Bell-Curve Based (BCB) algo- 
rithm are the use of a new geometrical construct in the 
design space, combined with the probability calculus 
tools of the uniform and normal distributions (bell- 
curve) for deriving children designs from the parent 
designs that are paired by a fitness criterion of the ob- 
jective function penalized for any violation of the con- 
straints. This mechanism replaces the classical, biol- 
ogy-inspired, bit-exchange (crossover) as a means by 
which to pass the parent features to the children. In a 
variant of the algorithm (BCBN), one parent is quali- 
fied by the value of the objective, the other by the value 
of the maximum violated constraint. 

BCB and BCBN have been tested on a number of cases 
and both performed as intended in all of them. A sam- 
ple test reported herein was a minimum weight 
(volume) design of a redundant structure with up to 36 
cross-section variables. To create a case of multiple 
local minima, the member orientation angle was also a 
design variable in one of the tests. The strength, local 
buckling, and displacement limitations generated 36 
highly nonlinear constraints. In these tests the algo- 
rithm was able to do as well or better than a benchmark 
NLP search algorithm in terms of the objective function 
value and the ability to eliminate constraint violations. 
Regarding the number of function evaluations it was on 
par with other GAS and, as expected, not competitive 
with gradient-guided NLP techniques. However, supe- 
rior to the NLP techniques, the algorithm is not ham- 
pered by discrete variables, and its capability to find 
global minima in presence of local minima was demon- 
strated in the test. 

The principal motivation for development of BCB was 
to have the adaptability and flexibility needed to pre- 
vent premature convergence that occurs in many GA 
processes because of the loss of population diversity. 
Indeed, owing to the intrinsic controllability of the 
normal distribution by the mean and variance parame- 
ters, combined with the malleability of the geometrical 
construct, BCB has exhibited the desired adaptability 
and flexibility in the tests. Another merit of BCB is its 
ability to identify a number of feasible and near-optimal 
solutions, as opposed to a point solution typical for an 
NLP technique. 

Future work is aimed at furthering BCB’s adaptability 
to the peculiarities of the design space topology, incor- 
poration of the gradient data wherever available, and on 
the elapsed time reduction by the use of concurrent 
processing for simultaneous generation of individual 
designs. 
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Amendm 

1) Step-by-step recipe and 
mathematical details; 

2) Orthogonal hypersphere; and 
3) Test Case details 

1) The algorithm’s steD-bv-step recipe is 
as follows (BCBN notes the only steps 
where BCBN differs): 

1) Generate a population of designs by any 
technique commonly used in a conventional 
GA. 

2) Analyze each design for the value of the 
objective function and constraints, eq. 2. For 
each design generate a single “measure of fit- 
ness” combining the value of the objective (the 
smaller the better) and of the constraints 
(negative = satisfied, zero = active (critical), 
positive = violated); thus, a smaller fitness re- 
flects a better design. 

In BCBN, place individuals from N in two 
populations of N each, rank one by F and the 
other by max(g). 

3) Pair-up the designs to form parents for 
mating, rewarding fitness (as measured by FP) 
with more chances to mate. The effect is that 
individuals that are more fit participate in 
more parent pairs, and end up contributing 
their characteristics to more children. BCB 
uses the electronic roulette to do this, as in the 
conventional GA. 

In BCBN, one parent is selected from the 
population ranked by F, the other from the one 
ranked by max(<g>). 

4) Generate a child: 

Consider a design space in n- 
dimensions. Figure 1 illustrates a 3D 
example. Design points P1 and P2 are 
the parents, assignment of the P1 and 
P2 labels is arbitrary. The hyperline L 
connects the parents. The prefix 
“hyper” reminds us that we are deal- 
ing with n-dimensional space of 
which 3D simplification is depicted 
in Figure 1. Line L extends beyond 
P1 and P2 to infinity, emphatically, it 
is not merely a (Pl,P2) segment. P1 
and P2 define vectors X1 and X2. 
The distance D between P1 and P2 is 

D = ll(X12 + X2z)’”ll. 

Coordinates X, of point M on L be- 
tween P1 and F’2 are 

k = f2/(fi + fz) 

XM=X2+(X1 - X 2 ) k  
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(recall, a smaller fitness is better, thus 
as f2 improves relative to fi, k will de- 
crease, moving point M closer to X2 
and vice versa) 

. The variate, NB, is generated relative 
to x, 

Or, equivalently, relative to X2 

NB = N(X,, 0) 

Assume o is in the units of D and 
place point B at a distance from M 
measured by sB from eq.3 

XB = XM -k ( X 2  - XI) N(0, O)/D; 

or use the equivalent formula 

XB = X 2  + (X1 - X 2 )  N(XM, o)/D; 

Generate an N-dimensional hyper- 
sphere with radius R that is orthogo- 
nal to L at B, and place child C on the 
surface of the above hypersphere, 
using a uniform probability distribu- 
tion over that surface, Le., each point 
on the surface has the same chance of 
selection (details in Appendix, Sec- 
tion 2) 

X, defines the child design point. If 
any element of X, exceeds its bounds 
it is reset to that bound 

5) Repeat #3 to 5 to produce the entire off- 
spring generation 

6) Group together the newly generated chil- 
dren population and the previous population 
from which their parents were drawn (the 
grouped population comprises 2 NP individu- 
als) and select the most fit individuals. These 
individuals represent the next generation. The 
size of the next generation is kept at NP by 
discarding the least fit half in each successive 
grouped population. Then, repeat from #2 
until termination criteria are met. 

2) Child C Placement on HvDersphere that is Orthogo- 
nal to L and has N-distributed R 

1) Shift the coordinate system X origin to B. 

2) Rotate X so that X, coincides with L point- 
ing from PI to E. 
3) Apply algorithm by Knuth 1969: 

0 

Set and maintain X, = 0 
Let X2, X,, . . . X,, be normal variates dis- 
tributed as N(0,l). 
Let b = (X;+X; + ... + X,,,.:)'" 
Generate radius R distributed as the posi- 
tive half of N(0, (r D)) for assumed C 
Generate point C whose coordinates are 

3) Test Case Details 

The solution method is the standard, linear, displace- 
ment-based finite element method, using the beam ele- 
ment in a slender beam formulation that neglect the 
transverse shear stress deformations and preserves the 
Kirchoff s assumption of the beam cross-sections re- 
maining planar under the load. The structure is two- 
dimensional for analysis purposes, with the exception 
of out-of-plane member buckling. The following de- 
tines the constraints. 

Displacement Constraints at the hub: 

dd ,  - 1 < 0 q/q, - 1 0 

d = resultant translational displacement 
q = rotational displacement 

QP d a  
tyo-member hub: 0.2 cm 1 .O rad 
six-member hub: 0.2 cm 1 .O rad 

Stress Constraints: 

Normal and shear stresses (s and t) were 
evaluated within the cross section at the top 
and bottom extreme fibers, at the centroid, and 
at the top and bottom of the web. This was 
done at both ends of the member except for the 
centroidal stresses which are constant along 
the length of the member. The following stress 
constraint was imposed at each location: 

se4/sa- 1 1 0  

seq = von Mises-Huber equivalent stress = 
(s2 + 3 t y  

sa = allowable stress = 25 kN/cm2 

In-Plane Buckling Constraint for each beam: 

6 

American Institute of Aeronautics and Astronautics 



N = axial force (compression positive) 
N,, = 2.05Il’ E&&’ 
E = modulus of elasticity = 20,000 kN/cmZ 
I,, = strong axis moment of inertia 
L = member length 

Out-of-Plane / Lateral-Torsional Buckling 
Constraint (at each end): 

(N/N,) + (M/Mcr)’.’’ - 1 5 0 

N = axial force (compression positive) 
M = magnitude of bending moment 
N, = 2.05l-I’ EIyYn2 
M, = II(EIyy/GI~l/UL 
E = modulus of elasticity = 20,000 kN/cm2 
G = shear modulus of elasticity = E/2( l+v) 
v = Poisson’s ratio = 0.3 
I, = weak axis moment of inertia 
I, = torsional moment of inertia = b#,3+b2t2 

+(h- t ,-tJb: 

L = member length 

Local Flange and Web Buckling Constraints 
(at each end): 
s/s, + ( t / ~ ) ~  - 1 2 0; where 
s = normal stress (compression positive) 
t = shear stress 

The above stresses were evaluated at the fol- 
lowing points: 

t s 
flanges: mid-flange extreme fiber 
web: centroid mid-web 

and constrained by the following critical stress 
values: 

tcr scr 
Top Range: os%( 2t l/b I)* 0.41E(2tl/b1)’ 
Bottom Range: 0.55E(2tz/b,)2 0.4 lE(2t2h2)’ 
Web: 4.80E(bJ(h-tl-t2))2 3.60E(bJ(h-tl-t&)’ 

E = modulus of elasticity = 20,000 kN/cm’ 
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Bounds on Section Variables: 
lower UPPPer 

b,: 2.0 cm 6.0 cm 
t,: 0.1 cm 1.0 cm 
b,: 2.0cm 6.0cm 
t,: 0.1 cm 1.0 cm 

Member 1 
Member 2 

Table 1: Hub Structure Version 1 

Length Angle 
200.0 293.867 
200.0 337.050 

Member Data 

Load 1 
Load 2 

b,: 
h: 
A: 
I: 

Fx FY Mz 
10.6727 , 17.2130 12.6227 
44.8890 18.8343 12.5973 

lower upper 
0.1 cm 1.0 cm 
3.0 cm 8.0 cm 
0.68 cm2 10.00 cm2 
1.00 cm2 100.0 cm2 

Member 1 
Member 2 
Member 3 
Member 4 
Member 5 
Member 6 

Length Angle 
120.00 320.771 
120.00 92.717 
120.00 335.389 
12.00 99.809 
120.00 257.694 
120.00 174.027 

Load 1 
Load 2 
Load 3 

Table 2: Hub Structure Version 2 

Fx FY Mz 
26.219 17.516 14.269 
20.61 1 25.009 15.613 
13.667 19.360 16.835 

Me :mber Data 
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BCB 
Best Obi. Value 461.5 
Feasible? YES 
Time (Seconds) I 71 I 1 I 21 
# Solutions Examined 5000 280 10000 

CONMIN Random 
474.2 2276.7 
YES YES 

Table 2.1 Hub Structure Version 2.1 

Best Obi. Value 
Feasible? 
Time (Seconds) 
Total Solutions Examined 

BCB CONMIN Random 
532.8 535.9 2843.3 
YES YES YES 
194 1 22 

1 OOOO 90 10000 

Table 3: Performance comuarison of BCB and BCBN 

Number of Individuals 
10 
50 
100 
500 

Best Solution Found Generation Best Found 
461.3 367 
468.7 446 
465.2 476 
462.0 380 

. 

Number of Individuals I Best Solution Found I Generation Best Found I 

Generation Number 
0 

50 
100 
500 

1000 

10 463.8 500 
50 464.0 498 
100 463.1 309 
500 462.4 466 

Mean a Maximum a Minimum a 
2.7391 1 4.93799 BO7982 
3.10717 3.11264 3.10122 
3.1 1468 3.1 3 170 3.10776 
3.14148 3.1421 8 3.14057 
3.14159 3.14235 3.14057 

Table 4: Convergence of a on n (3.14159’1 

Angle a stated in radians 
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x3 

x1 

Figure 1. BCB Geometrical Construct in 3D Space: Pl,P2 - parents; C - child 
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Figure 2a. Potential Children From Standard Genetic Algorithm 
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Figure 2b. Potential Children From BCB Algorithm (Sm. Variation) 
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Figure 2c. Potential Children From BCB Algorithm (Lg. Variation) 
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Figure 3. Hub Structure 
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Figure 4. Schematic of Variable a Problem 
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Figure 5. Improving Fitness Using BCB Algorithm (General Case) 

Figure 6. Varying Q Values for Initial Child Generation 
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Figure 7. Varying r Values for Radius Generation 
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